Bioreactors – Practical Experience

By Anne M. Germain, P.E. DEE

'90 3 20

Trommeling Test Cell Waste

Excavated Waste from bioreactor test cell

Material retrieved from test cell time capsule

DSWA

Material from control test cell time capsule

Orange

Material from bioreactor test cell time capsule

Recirculation Methods

- Ponding
- Spraying
- Vertical Wells

Leach Fields

Horizontal Wells

Ponding

Ponding

- Advantages
 - Low cost
 - Immediate implementation
 - Simple
- Disadvantages
 - Potential odors
 - Potential short-circuiting of liquids
 - Aesthetics

Spraying

Spraying

- Advantages
 - Low cost
 - Immediate implementation
 - Simple
 - Good distribution if done consistently
- Disadvantages
 - Potential odors
 - Can only be used while landfill is operating

Vertical Well

DSWA Sandtown Landfill: Typical Cross-Section - Area D Recirculation Well (Constructed Between 1992 and 1999)

Vertical Wells

- Advantages
 - Moderate cost
 - Wells can be implemented relatively quickly
 - Can be implemented and used after landfill cell is completed

- Disadvantages
 - Potential flooding of LFG wells
 - Limited distribution

Leach Field

DSWA Sandtown Landfill: Area D: Typical Cross-Section - Area D Leach Field (1998)

Leach Field

- Advantages
 - Can be implemented and used after landfill cell is completed

- Disadvantages
 - Need to wait until landfill cell is complete

Horizontal Well

HORIZONTAL INJECTION TRENCH SECTION

Horizontal Wells

- Advantages
 - Ability to recirculate significant quantities
 - Can be used after landfill cell is completed

- Disadvantages
 - Costs
 - Complicated

Potential Undesirable Impacts

Increased LFG Generation

Odors

- Flooding LFG Wells
- Leachate Seeps

Loss of Air Space

Plan View of Facility Leachate Collection Systems

Area A-B: Automated Recirculation System in 1990

Typical Cross-Section - Area D Recirculation Well

Typical Cross-Section - Area D Leach Field

Horizontal Injection Trench Detail

Distribution Piping/Trench Connection Detail - Side View

Horizontal Well Operations

- When to start?
- When to stop?
- When to start again?
- How to integrate with LFG collection system?

Leachate Recirculation History

	Total MSW Tonnage	Leachate Recirculated (Mgals)	
Area A & B	697,000	21.6	
Area C	631,000	4.1	
Test Cells	18,000*	0.5	
Area D	595,000	4.0	
C/D Valley	143,000	1.4	
Area E	408,000	0	
TOTALS	2,474,000	31.6	

Current Situation (2002)

	Leachate	Leachate	Leachate	Treatment
	Collected	Recirculated	Treated Offsite	Cost
	(gals)	(gals)	(gals)	
Area A & B	3,968,000	0	3,968,000	\$220,000
Area C	1,069,000	0	1,069,000	\$60,000
Area D	1,131,000	487,000	0	0
C/D Valley	0	734,000	0	0
Area E	2,699,000	0	2,609,000	\$145,000
TOTALS	8,867,000	1,221,000	7,646,000	\$425,000

Other Considerations

Ease of Operation

■ To Cap or not to Cap

Capital Investment

DSWA's Future Goals

- Operate all active and closed cells as Bioreactors
- Eliminate offsite treatment of leachate
- Reach end of post closure period with a zero discharge leachate treatment system consisting of:
 - Recirculation system
 - Wetlands treatment system
 - Phyto cap